Coastal upwelling fronts as a boundary for planktivorous fish distributions

Mei Sato1,4,*, John A. Barth1, Kelly J. Benoit-Bird1,2, Stephen D. Pierce1, Timothy J. Cowles1, Richard D. Brodeur3, William T. Peterson3

1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR 97331, USA
2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
3National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Hatfield Marine Science Center, Newport, OR 97365, USA

4Present address: Institute for the Oceans and Fisheries, The University of British Columbia, AERL Building, 2202 Main Mall, Vancouver, BC V6T1Z4, Canada

ABSTRACT: Fronts have long been considered as bio-aggregators across the food web, serving as important foraging grounds for multiple trophic levels. However, the effect of fronts on intermediate trophic levels is not well understood. We hypothesized that for animals whose metabolic rates are strongly temperature dependent, physiological tolerance will have a more significant impact on their distributions than other biotic factors. We examined this hypothesis through assessment of the spatial variability of planktivorous fish and their dominant zooplankton prey associated with the seasonal and latitudinal variability of the upwelling fronts in the Northern California Current System. Acoustically observed fish biomass dominated by planktivorous species was higher offshore of the upwelling front than inshore. In contrast, zooplankton scattering layers dominated by euphausiids were generally associated with the 200 m isobath, regardless of the position of the front. Fish distributions were consistently found offshore of the upwelling front, aggregating them in the regions of warmer temperature. This suggests that the upwelling front acts as a shoreward boundary for planktivorous fish. With the offshore movement of the upwelling front away from the 200 m isobath as the upwelling season progressed, overlap between planktivorous fish and their zooplankton prey would be decreased. The boundary effect of coastal upwelling fronts on the distributions of mid-trophic level organisms indicates their important role in predator–prey interactions and energy transfer through food webs via a radically different mechanism than previously assumed.

KEY WORDS: Upwelling · Fronts · California Current System · Predator–prey interactions · Acoustics

© Inter-Research 2018 · www.int-res.com

INTRODUCTION

Biological–physical interactions structure the variability of the ocean at a wide range of spatial and temporal scales, affecting population dynamics and trophic interactions (Haury et al. 1978, Bakun 1996). Physical processes often set the stage on which the biological play is enacted to create the structure of life in the ocean. One such example is at a front, a physical interface with sharp gradients of water properties including temperature, salinity, and/or turbidity (Joyce 1983, Le Fèvre 1987). These fronts occur across the world’s oceans, ranging from basin-scale features to small river plumes, and can be persistent or ephemeral (Le Fèvre 1987, Belkin et al. 2009). Frontal zones are often associated with enhanced biomass and may serve as important foraging grounds by aggregating species from multiple trophic levels.
phic levels (Franks 1992a, Genin et al. 2005, Bost et al. 2009), hence being critical habitats for successful energy transfer through food webs.

The conceptual view of fronts as bio-aggregators has been developed largely based on studies focusing on primary and secondary production and top predators. Surface convergence, which is a major characteristic of fronts, retains nutrient-enhanced primary productivity and accumulates phytoplankton (Tragna zana et al. 1987, Franks 1992a, Genin et al. 2005). Zooplankton actively swim against the flow caused by fronts, forming aggregations at frontal boundaries (Franks 1992b, Genin et al. 2005). Such convergence zones correspond to aggregations of large predatory fish (Young et al. 2001, Seki et al. 2002), seabirds, and marine mammals (see review by Bost et al. 2009). A missing link in the food webs, however, is the understanding of the mechanisms driving distributions of intermediate trophic levels such as planktivorous fish. Due to the concentrated planktonic food sources and the observation of piscivore aggregations at fronts as well as high abundance of juvenile and larval fishes associated with mesoscale eddies (Logerwell & Smith 2001, Nishimoto & Washburn 2002, Sabarros et al. 2009), it has been assumed that planktivorous fish also aggregate at frontal zones. However, few studies have focused on the relationship between oceanic fronts and planktivorous fish (Lara-Lopez et al. 2012, McClatchie et al. 2012).

Predator–prey interactions are not the sole factor in determining the distribution of animals in the ocean. Temperature is a well documented driver of the distributions of organisms at both large and small scales (Worm et al. 2005, Tittensor et al. 2010). Relationships between physiological optima and limits under different temperatures, oxygen, and other biotic and abiotic factors determine the spatial distributions of fish (Pörtner & Farrell 2008, Sunday et al. 2011, Peck et al. 2013). Growth and reproduction of ectothermic organisms are strongly dependent on temperature, ultimately affecting their population abundance (Pörtner & Knust 2007). Since wind-driven coastal upwelling commonly generates thermal fronts with a strong horizontal temperature contrast (Huyer 1983), these fronts may serve as a physiological boundary and constrain an individual's habitable range. We hypothesize that for animals whose metabolic rates are strongly temperature dependent, including key mid-trophic level animals like planktivorous fish, physiological tolerance may have a more significant impact on their distributions than other biotic factors such as prey availability, potentially resulting in spatial mismatches between these animals and their prey.

We examined spatial variability of planktivorous fish and their dominant zooplankton prey in the Northern California Current System. Our goal was to assess the role of an upwelling front on the distributions of mid-trophic level organisms. By employing ship-based surveys integrating hydrographic, optical, and acoustic measurements, we simultaneously characterized the spatial distributions of multiple trophic levels and their physical environment. We also compared 2 zones of our study area known to have significant difference in upwelling winds (Huyer 1983, Bograd et al. 2009) to examine seasonal shifts in planktivorous fish distributions associated with the upwelling fronts. An understanding of the differential effect of the fronts on organisms across the food web provides a new perspective on how these ecosystems function.

MATERIALS AND METHODS

Study site

In the Northern California Current System (Fig. 1a), upwelling is primarily a summer phenomenon driven by wind along the coast. Topographic features play an important role in the local intensity and spatial extent of upwelling. For example, Heceta Bank off central Oregon deflects the upwelling jet, widening the influence of upwelling and creating an area of retention for nutrient-rich water that leads to increased primary productivity (Barth et al. 2005) and high densities of euphausiids (Ressler et al. 2005). Cape Blanco, whose coastline extends offshore, influences the circulation that separates the upwelling jet and frontal zones (Lara-Lopez et al. 2012, McClatchie et al. 2012).

Sampling was designed to include a region between Newport, Oregon (44.6°N), and Crescent City, California (41.9°N; Fig. 1b). Ship-based sampling was conducted by the Northeast Pacific Global Ocean Ecosystem Dynamics (GLOBEC) program (Batchelder et al. 2002) over 2 yr during May–June, to sample...
early in the upwelling season, and July–August, to sample fully developed upwelling (Table 1). The study area was divided into the northern and southern zones (Fig. 1b) to examine latitudinal variability of upwelling characteristics at the mesoscale (20–200 km). The boundary between the northern and southern zones was determined to encompass major topographic features at each zone (Heceta Bank and Cape Blanco), associated changes in the upwelling jet, and latitudinal variability in wind forcing. There were 20 parallel, east–west transect lines whose lengths varied between 60 and 160 km depending on the cruises, with repeated surveys on some of the transects (Table 1). The mesoscale transects were separated by ~28 km in the latitudinal direction and covered inshore and offshore of the upwelling fronts; transect lengths were shorter during May–June than during July–August due to the nearshore positioning of the front. Other east–west transects, positioned between mesoscale transects to obtain fine-scale patterns, were surveyed depending on the time available. Ship-based surveys were conducted continuously, resulting in a mixture of daytime and night-time coverage within transects. Simultaneous measurements of biological and physical properties were conducted using concurrently towed, multifrequency echosounders and an undulating vehicle equipped with hydrographic and optical sensors. Typical vessel speed during surveys was approximately 7–8 knots (3.6–4.1 m s⁻¹). Data collected during the northward wind events persisting over 5 d, resulting in downwelling conditions, were excluded from analysis.

Data collection and analysis

Environmental data

Winds were measured at the NOAA National Data Buoy Center buoy 46050 (44.7° N, 124.5° W) located off Newport for the northern zone, and buoy 46027 (41.9° N, 124.4° W) located off Crescent City for the southern zone (Fig. 1b). Wind stress was calculated based on the method of Large & Pond (1981). The hourly data were low-pass filtered to remove diurnal variations. To estimate the cumulative alongshore wind stress during the upwelling seasons, along-

Table 1. Summary of daytime acoustic surveys for fish and zooplankton distributions. Total number of transects: total number of transects covered by the daytime acoustic surveys regardless of their repetitive coverage on the same transects; independent transects: number of transects after removing the repeated surveys on the same transects; NASC: nautical area scattering coefficients

<table>
<thead>
<tr>
<th>Survey</th>
<th>Date</th>
<th>Ship</th>
<th>Total no. of transects (independent transects)</th>
<th>Total distance surveyed (km)</th>
<th>NASC [mean ± SD, m² nmi⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2000</td>
<td>30 May– 16 June</td>
<td>RV ’Wecoma’</td>
<td>8 (8)</td>
<td>421.4</td>
<td>235.3 ± 182.2 4.6 ± 24.1</td>
</tr>
<tr>
<td>June 2002</td>
<td>1–17 June</td>
<td>RV ’Thomas G. Thompson’</td>
<td>16 (12)</td>
<td>777.9</td>
<td>1343.0 ± 1320.0 32.2 ± 266.9</td>
</tr>
<tr>
<td>August 2000</td>
<td>30 July – 17 August</td>
<td>RV ’Wecoma’</td>
<td>24 (17)</td>
<td>1411.6</td>
<td>1302.5 ± 1270.4 64.0 ± 210.3</td>
</tr>
<tr>
<td>August 2002</td>
<td>1–19 August</td>
<td>RV ’Roger Revelle’</td>
<td>19 (10)</td>
<td>1260.1</td>
<td>470.9 ± 538.9 34.4 ± 155.7</td>
</tr>
</tbody>
</table>
shore wind stress was summed starting from the spring transition (Huyer et al. 1979, Barth et al. 2005).

Temporal and spatial variability of environmental properties was measured by the towed, undulating vehicle SeaSoar equipped with a conductivity-temperature-depth (CTD) sensor (SBE 911plus; Sea-Bird Electronics) and a fluorometer (FlashPak; WET Labs). Raw variables from the CTD were converted to variables of interest using factory calibrations. The SeaSoar vehicle was towed from a winch, profiling between surface and near bottom or as deep as 110 m. Data were averaged over 1.25 km horizontal by 2 m vertical bins. Using the averaged temperature, salinity, and pressure data, we estimated the geopotential anomaly (ΔΦ; dynamic height in meters multiplied by the acceleration of gravity) at 5 m relative to 80 m. Geopotential anomaly fields have been used to identify the location of the equatorward upwelling jet because the effect of the upwelling on the strong seasonal pycnocline and the accompanying alongshore coastal jet are observable (Barth et al. 2000). Here, we chose ΔΦ = 1.8 m² s⁻² as the physical definition of the upwelling front and used it as a reference point to examine fish distributions. Spatial maps of temperature and geopotential anomaly at 5 m depth were constructed using a Barnes objective analysis, where horizontal grid spacing was 0.01°, and the smoothing length scale was 0.5° in latitude (56 km) and 0.3° in longitude (24 km). Spatial maps of chlorophyll a concentrations at 5 m depth were constructed using a minimum curvature method in Surfer (Golden Software) with horizontal grid spacing of 0.03° in longitude and latitude. To avoid the effect of temporal changes in mesoscale oceanographic processes and repeated coverage of the same transect lines, we only used the mesoscale transect data collected during both day and night over 4–6 d for the spatial maps.

Acoustic data

Acoustic backscatter data were collected using multifrequency echosounders (Hydroacoustics Technology Inc., Model 244) operated at 38 kHz (7° split beam), 120 kHz (6° split beam), 200 kHz (3° split beam), and 420 kHz (7° single beam). The centers of each transducer were no more than 51 cm apart on the towed body to maximize spatial overlap of the beams. Transducers were deployed on a towed body positioned at approximately 4–12 m depth. Echosounders operated at 0.7–1 ping s⁻¹ with a pulse duration of 200 µs. Raw data were automatically averaged into 13 s horizontal (approximately 50 m) and 1 m vertical bins, and the averaged volume backscattering strength (Sv; dB re 1 m⁻¹) using a constant sound speed of 1486 m s⁻¹ was recorded. All echosounders were calibrated by the manufacturer before the first cruise of each year in 2000 and 2002.

Pre-processing. Acoustic data were pre-processed using Echoview (version 6.1; Echoview Software). Data shallower than 9 m depth were removed from analyses to eliminate near-field transducer effects and to reduce backscatter from surface bubbles. Near-surface data were visually inspected, and further contaminations due to bubbles below 9 m depth were manually corrected. The echosounder-detected bottom was visually inspected, corrected if necessary, and data within 2 m of the bottom were removed from the analyses. Background noise was removed using a technique developed by De Robertis & Higginbottom (2007) with a minimum signal-to-noise ratio of 6 dB and maximum noise threshold of −125 dB re 1 m⁻¹. Data were smoothed by applying 3 samples × 3 bins (approximately 150 m horizontal × 3 m vertical) running medians to reduce stochastic differences in patterns among frequencies having physical separation of transducers, then exported from Echoview to Matlab (Mathworks, R2013a) for further analysis.

Acoustic classification of dominant taxa. Due to low resolution of the recorded Sv data, we could not explore patches smaller than 50 m in horizontal extent. Therefore, all identified layer structures were greater than 50 m. We examined the acoustic backscatter from both day and night surveys that had no diel vertical migration behavior in the water column. Daytime was defined from 3 h after sunrise through 3 h before sunset, and nighttime was defined from 1.5 h after sunset through 1.5 h before sunrise. Sunrise and sunset times at the study site were obtained from the US Naval Observatory (http://aa.usno.navy.mil/data/index.php).

Acoustic backscatter was classified into 2 categories, one attributed to fish with swimbladders and one to zooplankton, based on the observed frequency response (Kang et al. 2002, Sato et al. 2015). In order to identify aggregations within the upper 200 m, we used the 38 and 120 kHz frequencies in calculating the difference in volume backscattering strength (ΔSv = Sv, i − Sv, j where i and j denote frequency in kHz). Cells with −5.0 ≤ ΔSv 120-38kHz < 6.5 dB re 1 m⁻¹ were assigned to the 'fish' category, and those with 6.5 ≤ ΔSv 120-38kHz < 18.5 dB re 1 m⁻¹ were assigned to the ‘zooplankton’ category (Fig. 2). Using these classifications, all data not classified as ‘fish’ were masked out in
the 38 kHz echogram, and all data not classified as 'zooplankton' were masked out in the 120 kHz echogram. To examine the effect of the upwelling front on spatial distributions of pelagic organisms, daytime 'fish' in the upper water column (≤100 m depth and shallower than 60 m above the bottom) and daytime 'zooplankton' in the deeper water column (>100 m depth or within 60 m of the bottom) were analyzed (see the Appendix for details).

Net sampling

Fish trawling was conducted mostly during daytime using a Nordic 264 rope trawl (30 m wide × 18 m deep; Nor’Eastern Trawl Systems) from chartered fishing vessels (FV ‘Sea Eagle’ in 2000, FV ‘Frosti’ in 2002). A trawl was towed in surface waters for 30 min at a vessel speed of approximately 3 knots (1.7 m s\(^{-1}\)). Mesh size of the trawl ranged from 162.6 cm in the body of the net to 8.9 cm in the codend, with a 6.1 m long, 0.8 cm mesh knotless liner sewn into the codend. All pelagic fish were identified to species and counted, and a subsample of each species was measured for fork length (FL) or standard length (SL) depending on fish species. All samples were standardized by the towed area estimated based on the width of the trawl and the towed distance. Additional sampling details are described by Brodeur et al. (2004) and Reese & Brodeur (2006). Spatial overlaps between the daytime trawling stations and high biomass of acoustically observed fish, integrated over 9−20 m to match with approximate trawling depth, occurred during cruises in June 2002 (3 trawls) and August 2000 (6 trawls). The identified trawls were combined for each cruise to examine species composition of potential acoustic backscatterers. There was a temporal mismatch between the trawling and acoustic measurements of 2–27 h. No trawls were conducted near the high biomass regions during June 2000 and August 2002.

Zooplankton were sampled using a Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS; Wiebe et al. 1985) configured with 10 nets (335 µm mesh) with a 1 m\(^2\) mouth opening. Depth-stratified oblique tows were conducted from a vessel (RV ‘New Horizon’ during June and August 2000 and August 2002, RV ‘Wecoma’ during June 2002) at a vessel speed of approximately 2.5 knots (1.3 m s\(^{-1}\)), closely following the ship conducting the acoustic surveys. Only MOCNESS tows that successfully targeted the daytime zooplankton scattering layers (6 samples) were examined in this study. Those samples were collected within 2 h of the acoustic measurements to minimize spatial and temporal mismatches between net sampling and acoustic measurements. Samples were fixed in 5% formalin in seawater buffered with sodium borate. In the laboratory, a subsample of the net contents was identified to species under a dissecting microscope. Density of abundant taxonomic groups was estimated based on the filtered volume. Additional details are described by Ressler et al. (2005).

Characterizing spatial distributions of planktivorous fish and their zooplankton prey

We examined horizontal distributions of planktivorous fish and zooplankton based on vertically integrated acoustic backscatter. Nautical area scattering coefficient (NASC; m\(^2\) nmi\(^{-2}\)), which is a linear measure of integrated backscatter, was calculated in the upper water column for fish and in the deeper water column for zooplankton using a –85 dB re 1 m\(^{-1}\) Sv integration threshold. Spatial maps of vertically integrated acoustic backscatter for fish and zooplankton were constructed using a minimum curvature method in Surfer with horizontal grid spacing of 0.03° in longitude and latitude. All mesoscale transects surveyed during the daytime were included in the spatial maps of NASC values, along with other daytime transects that were not part of the mesoscale survey. When there were repeated surveys on the same transect lines, the one with the longer distance was chosen. To examine the effect of the upwelling front on animal distributions, the front (ΔΦ = 1.8 m\(^2\) s\(^{-2}\)) was identified on the same transects used for the daytime acoustic surveys for fish and zooplankton. When multiple upwelling fronts were detected along a transect, the one closest to the shore was chosen.
Fish distributions relative to the upwelling fronts were examined for each cruise. We used a series of criteria to identify transects to be analyzed. (1) Only transects that contained the upwelling front and extended at least ±10 km from the front were used for analysis, so that acoustically detected fish biomass could be compared between offshore and inshore of the fronts. (2) Transects were required to contain a region of high biomass, defined as the NASC values exceeding 1 standard deviation (SD) from the mean which was estimated for each cruise (Table 1). By setting these thresholds, we excluded from the analysis transects with consistently low biomass in the entire transect. In order to compare transects having variable maximum values, NASC values were normalized by the maximum NASC value observed along each transect. The number of transects which met the above criteria were 5–8, depending on the cruises. (3) Distance between the normalized NASC and the upwelling front was calculated for at least 2 transect lines per cruise. Data from at least 2 transects, which met criteria (1) and (2), were binned into 10 km segments for each cruise. To avoid temporal changes in the locations of the upwelling fronts within the survey conducted over as long as 19 d, we estimated the longitudinal distance to the upwelling front identified on the same transect, that was separated by less than 9 h. The potential effect of choosing the upwelling front closest to shore would be minimal because we combined the data from multiple transects and binned them into 10 km segments, increasing the sample size. Statistical differences of the normalized NASC values between offshore and inshore of the upwelling front were tested using a Mann-Whitney U-test. Zooplankton distributions were examined for each cruise following the same criteria described above, using the 200 m isobaths as reference points. The number of transects which met the criteria (1) and (2) were 6–9, depending on the cruises.

Seasonal changes in fish distributions relative to the upwelling front, and zooplankton distributions relative to the 200 m isobath were examined. First, variability in the locations of the upwelling fronts was estimated by taking averages and SDs of the distance between the fronts and the 200 m isobaths for all the transects containing the front. Secondly, high biomass regions of fish and zooplankton (NASC > mean + 1 SD) were extracted. We used transects that contained high biomass regions regardless of their lengths, so that we had the minimum of 2 transects in the northern and southern zones, respectively, for comparison. Transects were required to include the upwelling fronts for fish and the 200 m isobaths for zooplankton, so that our analysis on their spatial distributions relative to each reference point was unbiased. The total number of transects which met these criteria was 8–13 for fish and 6–10 for zooplankton depending on the cruises. Means and SDs of the location of high biomass were examined for each cruise, corresponding to the cumulative alongshore wind stress measured off Newport for the northern zone and off Crescent City for the southern zone.

RESULTS

Upwelling characteristics

The upwelling season started earlier in the southern zone compared to the northern zone, with stronger wind stress towards the south. In 2000, the spring transition occurred 17 d earlier off Crescent City than off Newport. The June mesoscale survey corresponding to the early part of the cruise was conducted during upwelling favorable (southward) wind, while the rest of the survey corresponded to a period of northward wind events resulting in downwelling conditions (Fig. 3a,b). After this downwelling event, the winds were consistently upwelling favorable. Cumulative wind stress reached 0.4–0.8 N m⁻² d during the June cruise and 2.6–3.2 N m⁻² d during the August cruise off Newport, and 2.3–2.7 N m⁻² d during June and 6.2–6.9 N m⁻² d during August off Crescent City (Fig. 3c). In 2002, the spring transition occurred 28 d earlier off Crescent City than off Newport. Relatively consistent upwelling-favorable wind was observed during both June and August cruises (Fig. 3d,e). Cumulative wind stress was 2.1–2.7 N m⁻² d during June and 3.7–4.2 N m⁻² d during August off Newport, and 5.7–7.3 N m⁻² d during June and 9.0–10.1 N m⁻² d during August off Crescent City (Fig. 3f).

The spatial map of temperature at 5 m depth showed a narrow band of cold, saltier water along the coast during the June 2000 cruise, generally following the 200 m isobath throughout the study area (Fig. 4a; Barth et al. 2005). The exception was the penetration of warm, fresher surface waters (remnants of the Columbia River plume) onshore of the 200 m isobath at Heceta Bank. The position of the geopotential anomaly contour of 1.8 m² s⁻², indicating the location of the upwelling front, closely matched with the sharp change in temperature. Chlorophyll a concentrations were high at Heceta Bank, off Coos Bay, and south of Cape Blanco.
Upwelling features during June 2002 showed considerable along-shore variability (Fig. 4b). Upwelled waters were close to the shore in the northern zone, while there was a broadening of the upwelling region in the southern zone. High chlorophyll concentrations associated with the upwelling front were observed over Heceta Bank, off Cape Blanco, and farther offshore south of Cape Blanco (Fig. 4f). During August 2000, intensified upwelling characterized by colder and saltier surface waters compared to the conditions during June 2000 was observed along the coast (Fig. 4c; Barth et al. 2005). The upwelling region became broader over Heceta Bank, and there was a considerable warming of offshore waters. Local surface heating can account for the observed warmer surface temperatures. The upwelling front showed mesoscale variability which turned offshore off Cape Blanco (Fig. 4c) associated with relatively cold and saltier waters, representing a large anticyclonic meander. Chlorophyll a concentrations reaching 18.4 mg m$^{-3}$ were observed at Heceta Bank, and some patches were associated with the shelf off Cape Blanco and farther south (Fig. 4g). The upwelling front moving offshore of Cape Blanco also carried chlorophyll-rich surface waters. During August 2002, intensified upwelling and increased mesoscale variability was also observed (Fig. 4d). Upwelling regions became broader along the coast, and there were discrete patches of high chlorophyll concentrations both offshore and inshore of the upwelling front (Fig. 4h). The separating upwelling front off Cape Blanco created an offshore eddy.
(42.8° N, 125.5° W) with low temperatures and high concentrations of chlorophyll.

Spatial distributions of planktivorous fish and their zooplankton prey

We observed seasonal variability of integrated acoustic scattering of fish. There was consistently low biomass throughout all transects during June 2000, high biomass with patchy distributions during June 2002 and August 2000, and a few high biomass regions during August 2002 (Table 1, Fig. 5a–d). During the June 2002 and August 2000 cruises, higher biomass was observed offshore than inshore of the upwelling front (Fig. 5b,c) with a clear boundary at the front (Fig. 6b,c). Normalized NASC values were significantly higher offshore than inshore of the front during June 2002 (p < 0.01) and August 2000 (p < 0.05). During June 2000 and August 2002, higher NASC values were observed both offshore and across the front, and a decrease in biomass occurred at 20–40 km inshore of the front (Fig. 6a,d). Thus, there was no significant difference in biomass between offshore and inshore of the front (p = 0.06 for June 2000, p = 0.91 for August 2002).

Trawl catches collected near the aggregations of acoustically detected fish were composed of a mixture of planktivorous fish. The catch during June 2002 was dominated by juvenile rockfishes (*Sebastes* spp.; SL = 29.0 ± 7.9 mm [mean ± SD]) comprising 90.1% of the mean areal density. The catch during August 2000 was dominated by jack mackerel *Trachurus symmetricus* (FL = 489.9 ± 31.3 mm) comprising 60.9% of the catch, followed by larval stages of Dover sole *Micromus pacificus* and rex sole *Errex zachirus* (SL = 38.5 ± 14.7 mm) comprising 20.1%. Other catches included juvenile salmon, myctophids, juvenile Pacific sand lance *Ammodytes personatus*, blue shark *Prionace glauca*, juvenile and adult Pacific saury *Cololabis saira*, and larval northern anchovy *Engraulis mordax*. Since the trawls were conducted near the surface, fish inhabiting deeper depths were not targeted.

Integrated acoustic scattering of zooplankton showed consistently low biomass in most of the transects during June 2000, while there were patches...
Sato et al.: Upwelling fronts as boundaries for fish

generally associated with the 200 m isobaths between 20 km offshore and 40 km inshore of the isobaths, or shallower depth during June 2002, August 2000, and August 2002 (Table 1, Fig. 5e−h). High biomass regions were located across the 200 m isobaths, with the majority of peaks located inshore for all cruises (Fig. 6e−h). Euphausiids (*Euphausia pacifica, Thysanoessa spinifera*) were the dominant taxa collected from daytime zooplankton scattering layers, constituting 54.5–100% of density. Pteropods (*Lima -cina* spp.) are strong acoustic targets and contribute high S_v values (Stanton et al. 1994), but were rare in our samples (<1%) collected within zooplankton scattering layers. The majority of acoustically detected zooplankton conducted diel vertical migration, because night NASC values of zooplankton at depth were only 4.2–28.8% of those during daytime.

We observed the shift of the upwelling front toward offshore as a function of cumulative alongshore wind stress (Fig. 7). In the northern zone, the upwelling front was located at 24.8 ± 17.0 km inshore of the 200 m isobath early in the upwelling season, moving to 10.4 ± 14.9 km offshore of the isobath later in the season. In the southern zone, where upwelling was stronger compared to the northern zone, the upwelling front moved from 3.9 ± 9.1 km offshore of the 200 m isobath to 24.1 ± 16.1 km offshore as upwelling intensified. The high biomass of planktivorous fish was mostly located offshore of the upwelling front, except during August 2002 when their distributions became wider covering both inshore and offshore sides of the front, while zooplankton were consistently located inshore or across the 200 m isobath. During the period of increased fish biomass, corresponding to June 2002 and August 2000 cruises, high biomass of planktivorous fish was located offshore of the upwelling front, while zooplankton were consistently located inshore or across the 200 m isobaths (Fig. 7).

DISCUSSION

We assessed the spatial variability of planktivorous fish and their dominant zooplankton prey associated with the seasonal and latitudinal variability of the up-
welling fronts in the Northern California Current System. Acoustically observed fish biomass was higher offshore of the upwelling front than inshore, with statistically significant differences during the period of overall increased fish biomass corresponding to the June 2002 and August 2000 cruises. Trawl catches were dominated by planktivorous fish mostly composed of juvenile rockfishes and jack mackerel, both of which feed primarily on euphausiids (*Thysanoessa spinifera, Euphausia pacifica*) during summer (Brodeur et al. 1987, Miller & Brodeur 2007, Miller et al. 2010, Bosley et al. 2014). The high biomass of acoustically detected zooplankton, dominated by euphausiids, was generally associated with the 200 m isobath. Distributions of planktivorous fish offshore of the upwelling fronts corresponded to the warmer temperature, not to their zooplankton prey biomass, which was consistent with our hypothesis of physiological tolerance having significant impact on their distributions. Persistent fish distributions offshore of the upwelling front suggest that the upwelling front acts as a shoreward boundary at the mesoscale. Because of the dynamic nature of upwelling systems coupled with co-varying water properties across the fronts, it is difficult to identify the mechanisms driving biological responses. Temperature has been considered as the most important factor determining geographical distributions of fish, because the metabolic rate of all ectothermic organisms is strongly dependent on temperature influencing their growth and reproduction.

Fig. 6. Horizontal distributions of nautical area scattering coefficient (NASC) values of (a−d) fish relative to the upwelling front and (e−h) zooplankton relative to the 200 m isobath normalized to the maximum value of each transect. Bars show the average and errors bars show SD.
spawning distributions were linked to specific sea surface temperature: 13–25°C for sardines and 11.5–16.5°C for anchovies (Lluch-Belda et al. 1991).

Species-specific temperature ranges may explain seasonal shifts in fish distributions relative to the upwelling fronts. Among the planktivorous fish commonly observed in upwelling regions, jack mackerel and Pacific sardine Sardinops sagax tend to inhabit warmer waters than northern anchovy (Baxter 1966, Castillo et al. 1996, Checkley et al. 2000, Reiss et al. 2008). The shift in the transition point of fish biomass inshore of the front during the June 2000 and August 2002 cruises (Fig. 6a,d) may be due to the seasonal change in species composition toward those that prefer colder waters. Alternatively, life-stage specific preference in temperature range may cause the seasonal shifts in fish distributions. Early life stages have broader or narrower windows of thermal tolerance, depending on the species (Peck et al. 2013). We could not examine these hypotheses further, because we did not have trawl samples targeting the fish acoustic layers during all cruises. It is also possible that fish larger than those captured by the trawl were the primary constituents of the acoustically observed fish layers due to net avoidance behavior of fast-swimming organisms (Kaartvedt et al. 2012, Davison et al. 2015). Fish inhabiting waters close to the surface (<9 m depth) could not be detected in this study due to the blind zone of the ship-based acoustic surveys, potentially introducing a partial vertical mismatch between acoustic measurements and trawl sampling.

In addition to temperature, other factors may play a role in planktivorous fish distributions. In the Humboldt Current System, both temperature and salinity were considered as the important drivers of the distribution of sardine, anchovy, and jack mackerel (Castillo et al. 1996). Because temperature and salinity co-vary across the fronts, it is difficult to decouple their effects on fish distributions. Hypoxia is an increasing threat for coastal ecosystems, affecting the quantity and quality of habitat available to organisms (Breitburg et al. 2009). In the California Current system, anoxia in the water column is expanding (Chan et al. 2008), and the upper boundary of the oxygen minimum layer has shoaled by up to 90 m over the last 20 yr (Bograd et al. 2008). Fish are generally more vulnerable to low oxygen levels than zooplankton (Ekau et al. 2010). Thus, a decrease in dissolved oxygen associated with upwelling of hypoxic bottom waters may result in their avoidance of nearshore waters. However, dissolved oxygen concentration alone cannot explain physiological stress posed by hypoxia because metabolic rates of animals are tem-

Fig. 7. Horizontal distributions of the upwelling fronts and high biomass of fish and zooplankton relative to the 200 m isobath as a function of cumulative alongshore wind stress. Upwelling fronts are shown in gray boxes whose height represents the survey period and width shows mean ± SD of the locations of the upwelling fronts. Circles show the mean, and error bars show the SD of fish and zooplankton distributions. Note that fish and zooplankton data are offset slightly for visual clarity.
perature dependent (He et al. 2015). Physiological stress due to inhabiting decreased dissolved oxygen waters may be mitigated by lower metabolic rates in colder water (Pörtner & Knust 2007, Deutsch et al. 2015, Sato et al. 2016), associated with upwelling. Long-term, high-resolution measurements of multiple environmental characteristics would be needed in the future to decouple the co-varying factors and determine the driving mechanism of planktivorous fish distributions in the dynamic upwelling systems.

Aggregations of euphausiids along the shelf break have been previously observed. In the Northern California Current System, euphausiids aggregate inshore of Heceta Bank and off Cape Blanco between the 200 and 800 m isobaths (Ressler et al. 2005, Swartzman et al. 2005). Complex interactions of the poleward undercurrent, bottom topography, and diel vertical migration behavior have been suggested to create and maintain euphausiid aggregations in upwelling regions (Mackas et al. 1997, Ressler et al. 2005, Swartzman et al. 2005), which may also explain the mismatch between the acoustic distribution of euphausiids and high chlorophyll concentrations. Locations of euphausiid aggregations and their daytime depth observed in this study generally agreed with the previous studies, with euphausiids aggregating around the 200 m isobaths. Even if euphausiids concentrate over deeper isobaths (Swartzman et al. 2005), beyond the range of the ship-based acoustics used in this study, our conclusion that euphausiids aggregate near an upper-slope isobath rather than the position of the upwelling front likely holds. This is because the 200 and 800 m isobaths in this area are parallel and close together (approximately <23 km apart; Pierce et al. 2000).

Recruitment success of higher trophic levels is highly dependent on temporal (Hjort 1914, Cushing 1974, 1990) and spatial (Chick & Van Den Avyle 1999, Durant et al. 2007) synchronization with their prey. Since euphausiids are one of the primary prey for the planktivorous fish observed in our study site during summer (Miller et al. 2010), spatial overlap with their zooplankton prey is critical. Differences in reference points controlling the distributions of planktivorous fish and zooplankton suggest that shifts in their relative positions may play an important role in predator–prey interactions. The offshore movement of the upwelling front away from the 200 m isobath as the upwelling season progressed suggests a decrease in horizontal overlap between planktivorous fish and euphausiids. Because Heceta Bank extends offshore, the upwelling front was located inshore of the 200 m isobath early in the upwelling season, potentially causing greater overlap between planktivorous fish and their zooplankton prey. During the period of fully developed upwelling, the front closely matched with the 200 m isobath creating a spatial gap between fish and zooplankton. Separation of the coastal upwelling jet also occurs near Cape Blanco, where the jet often turns westward or northward due to the subsequent anticyclonic meandering (Barth et al. 2000, 2005). Thus, aggregations of euphausiids on the shelf and slope off Cape Blanco (Ressler et al. 2005, Swartzman et al. 2005) may only be seasonally or intermittently accessible to planktivorous fish. In addition to horizontal overlap, feeding success of fish requires vertical overlap with their zooplankton prey. Here, we explicitly assume that the vertical overlap between planktivorous fish and euphausiids occurs at night when euphausiids migrate to shallower depths. This assumption, however, may not apply due to depth-dependent offshore transport within the Ekman layer (Peterson 1998) whereby subtle changes in vertical positioning of zooplankton can cause retention or dispersal. To separate fish from zooplankton at night when they are likely to co-locate, high-resolution sampling will be required.

Seasonal variability in accessibility to their prey can greatly impact recruitment success of fish populations. Commonly observed planktivorous fish off Oregon, such as jack mackerel and Pacific sardine, undergo extensive northward feeding migrations during summer (Brodeur et al. 2005, Kaltenberg & Benoit-Bird 2009, Litz et al. 2014). Pacific sardines also spawn in offshore regions of the Northern California Current System in summer (Emmett et al. 2005). Our observations of high fish biomass during June 2002 and August 2000 cruises likely captured this seasonal feeding and/or spawning migration, while June 2000 and August 2002 cruises were likely before and after the migration as indicated by the very low acoustic scattering values (Table 1). There is significant latitudinal variability in southward wind forcing during summer, increasing wind strength in the south and resulting in longer upwelling periods in southern latitudes (Huyer 1983, Bograd et al. 2009). Consequently, the time window of increased predator–prey overlap could be shorter in the south. If access to their zooplankton prey is seasonally limited, there may be a critical time period for seasonally migrating pelagic fish to appear in the Northern California Current System.

Spatial mismatch between planktivorous fish and their zooplankton prey may be accelerated in the future due to climate change. Although there are latitudinal and seasonal dependencies in projected upwelling-favorable wind intensity within the Cali-
The role of an upwelling front as a boundary for planktivorous fish distributions is an important mechanism controlling predator–prey overlap. The spatial mismatch between planktivorous fish and their zooplankton prey is likely alleviated during relaxation periods due to the onshore movement of the fronts. The short timescale of relaxation events in our study site, approximately 8 d (Austin & Barth 2002), suggests the potential for frequent spatial overlap between predators and prey with the degree of the overlap depending on the distance of the onshore movement of the fronts during relaxation as well as the response time of planktivorous fish. Based on the assumed role of fronts as bio-aggregators across the food web providing foraging locations, distance to the upwelling front has been considered as one of the key factors controlling spatial distributions of higher trophic level predators including seabirds and marine mammals (Ainley et al. 2005, 2009, Tynan et al. 2005). However, our results of the upwelling front acting as a shoreward boundary suggest that prey availability would be significantly different between inshore and offshore of the front. Instead of the traditional view of fronts as bio-aggregators which ignores the directionality (i.e. inshore vs. offshore), the location of piscivorous species relative to the front has significant impact on their prey availability. The boundary effect of the fronts on the distributions of mid-trophic level organisms suggests its important role on predator–prey interactions and energy transfer through coastal food webs.
Author copy

Sato et al.: Upwelling fronts as boundaries for fish
Appendix. Vertical separation of ‘fish’ and ‘zooplankton’ categories

Daytime survey data showed that both ‘fish’ and ‘zooplankton’ categories were vertically stratified into 2 depth zones: one in the upper water column (≤100 m depth and shallower than 60 m above the bottom), and one in the deeper water column or associated with the bottom (>100 m depth or within 60 m of the bottom; Fig. A1). To examine the effect of the upwelling front on spatial distributions of pelagic organisms, we focused on daytime ‘fish’ at shallower depths. Effects of near-surface frontal features on fish located at depth or associated with the bottom were less likely. We also excluded night-time ‘fish’ at shallower depths from the analysis because diel vertical migration of near-bottom fish toward shallower depths would complicate the interpretation of the surface pelagic fish distribution relative to the upwelling fronts. For the ‘zooplankton’ category, we focused on those observed at depth during daytime which are likely adult and juvenile euphausiids (Feinberg & Peterson 2003, Lamb & Peterson 2005). Zooplankton at shallower depths during day and night surveys were excluded from the analysis because zooplankton scattering layers could not be quantitatively characterized when they were co-located with fish due to low sampling resolution.

Fig. A1. Example echograms of volume backscattering strength (Sv) of vertically segregated (a,b) ‘fish’ and (c,d) ‘zooplankton’ categories during daytime in deep water and near the bottom. Dashed lines show a combination of 100 m depth and 60 m from the bottom used as threshold depths to separate 2 depth zones. Arrows indicate the locations of upwelling fronts. Sv data were from different survey lines: (a,c) along 43.0° N during August 2000, (b) along 41.9° N during August 2002 (not used in Fig. 5d), and (d) 44.7° N during August 2000 (not used in Fig. 5g)

Editorial responsibility: Kenneth Sherman, Narragansett, Rhode Island, USA
Submitted: August 15, 2017; Accepted: March 7, 2018
Proofs received from author(s): April 28, 2018